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The structure of time-dependent correlation functions for 
classical liquids 
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Theoretical Physics Division Building 8.9, AERE, Hanvell, Oxon OX11 O R A ,  UK 

Received 26 April 1976 

Abstract. A kinetic equation formulation is used to analyse the density and current 
correlation functions for a classical liquid. The matrix elements of the collision integral 
which contain information about the behaviour of the system in the short-time and 
hydrodynamic limits are eliminated formally from the kinetic equation and the correlation 
functions derived in terms of both these matrix elements and reduced correlation functions 
which are solutions of a kinetic equation with the remainder of the collision integral. This 
procedure facilitates the comparison of most of the existing theories and leads to a flexible 
scheme for developing interpolation formulae for the correlation functions which are valid 
in both the short-time and hydrodynamic limits. 

1. Introduction 

The time-dependent correlation functions, such as the coherent and incoherent scatter- 
ing functions, give a complete description of the physical properties of classical liquids. 
As these functions can be measured experimentally by neutron scattering and com- 
puted directly by molecular dynamics, it is not surprising that they have received much 
attention from theorists during the last ten years (Schofield 1975). So far, a complete, 
unified theory for both the equilibrium and non-equilibrium properties of liquids is 
lacking and the equilibrium properties are usually assumed known and used in the 
calculation of the non-equilibrium functions. In spite of the diversity of theoretical 
methods (Schofield 1975), including linear response, mean-field and kinetic equation 
theories, the resulting correlation functions are often similar in structure although 
different in detail. Several theories attempt generalizations from a particular limit, the 
extreme limits being the hydrodynamic (Zwanzig and Bixon 1970) and short-time 
regions (Lebowitz et a1 1969, Sykes 1973), and lead quite naturally to correlation 
functions which are valid in the limit but break down elsewhere. In this paper we 
examine the general structure of the time-dependent correlation functions and show 
what properties a theory must satisfy for the correlation functions to be correct in both 
the hydrodynamic and short-time limits. 

We will confine our attention to the coherent or  total functions and use a kinetic 
equation description with a collision integral Z. The conditions which Z must satisfy so 
that the correlation functions have the correct behaviour in the short-time and 
hydrodynamic limits have been given by Forster and Martin (1970) for a low density, 
weak coupling model and generalized independently by Mazenko (1974) and Forster 
(1974). The correlation functions, kinetic equation and these conditions are defined in 
0 2. In 0 3, we divide the collision integral B into two parts, the first part containing 
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1772 J Sykes 

information, such as sum rules, which is known and the second part being the 
remainder, a, which is either entirely unknown or extremely difficult to analyse. The 
first part of the collision integral is formally eliminated from the kinetic equation and 
the correlation functions are written in terms of those matrix elements of X which are 
well defined in the short-time and hydrodynamic limits and reduced correlation 
functions which are solutions of the kinetic equation with the remainder of the collision 
integral a. The general structure of the resulting correlation function is examined and 
this facilitates the comparison in 0 4 of many existing theories. In 0 5 ,  interpolation 
formulae for the correlation functions are developed which give the correct short-time 
and hydrodynamic limits by keeping those parts which are known and approximating 
those which are unknown. The properties of the reduced correlation functions are 
determined and a simple approximation, namely the equation of Bhatnagar eta1 (1954, 
to be referred to as BGK) with a single relaxation time, is suggested. 

The approach adopted here is similar to the recent work of Jhon and Forster (1973, 
the main difference being that we first eliminate formally the important matrix elements 
of the collision integral and examine the structure of the correlation functions, whereas 
the other authors start with an expansion of the collision integral in momentum space 
and introduce approximations before calculating the correlation functions. 

2. Kinetic equation: properties of the collision integral 

For a system of N particles, the ith particle being at ri ( t )  with momentumpi(t) at time t, 
the single-particle density is given by 

The single-particle phase-space distribution function is defined as 

S(1, t1; 2, f 2 )  = Sh, P I ,  t1; r2, p2, f 2 )  = ( W ,  tl) -(f(L tlNXf(2, f 2 )  -(f(2, t 2 ) > l > ,  (2.2) 

where the angular brackets denote an average over an equilibrium ensemble, and from 
the space-time invariance of the system 

S h P l ,  t1; r29p2, tz)=S(r1-r2, tl-tz;Pl,pz). 
We will follow the notation of Forster and Martin (1970) and Forster (1974), who use 
dimensionless momentum variables 

p = m u d  
with 

v i  = l /Pm ; P = l/k*T, 
and write the transform of S as 

S ( k ,  z ;  &, 43 = i dt ei" dr e-""S(r, t ;  &, e2), J,. 1 

(2.3) 

(2.4) 
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The transformed distribution function is the solution of the kinetic equation (Forster 
1974) 

(2 -vok.&i)S(k, 2 ;  61, 52)  = -So(k; 51, f 2 ) + j  d 5 3 Z k  2 ;  51, 53)S(k 2 ;  5s,&2) 

where 

~ ~ ( k ; 5 , , 5 2 ) = ~ ( k ,  t = 0 ;  fl ,  52)=114(5'1)~(51-52)+n~h(k)4(51)4((2). (2.6) 

4 is the Maxwellian velocity distribution in dimensionless form 

(2.5) 

4 (5) = ( 2 ~ ) - ~ ' ~  exp( - it2), (2.7) 

n is the density and h ( k )  is related to the liquid structure factor S ( k )  and direct 
correlation function c(k) by 

1 
1-nc(k)' 

S ( k ) =  l+nh(k)=  

As is well known (Nelkin and Ranganathan 1967, Lebowitz eta1 1969, Sykes 1973), the 
collision integral Z separates into two parts 

m, ; 51, 52)  = w, 51) + m, 2 ; 51952) (2.9) 

with the static part being 

Z"k, 51) = -nc(khok.514(51). (2.10) 

In order to discuss the properties of the collision integral E", Forster and Martin 
(1970) and Forster (1974) introduce a complete set of states Xu((); the first five, which 
we will call the hydrodynamic states, are 

Xl(8 = 1 ;  

X,(() = 5. i*; 
XA5) = 6.  f ; 

XdS) = 5.f 

X3(49 = (t2 - 3)/& 
(2.11) 

with l a n d  Cartesian unit vectors perpendicular to k. The remaining states will be left 
unspecified; they can for example be taken as Hermite polynomials. These states are 
orthogonal and normalized with weight function 4 : 

(4.4 = d5X,(O4(OX,(O = a&,,,. (2.12) 

We also define matrix elements by 

( m k ,  z)lcL) =Fvfi(k 2) = j dSl[ d52Xu(Sl)F(k z ;  51, 52)4(S2)Xp(S2) 

where again 4 is the Maxwellian function given in equation (2.7). 

function 

(2.13) 

The correlation functions we are particularly interested in are the density-density 

(2.14) 
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and the current-current function 

(2.15) 

where gl and gt are the longitudinal and transverse parts respectively. If we now put 

(2.16) 

(2.17) 

so that the kinetic equation (2.5) is satisfied by Sand So, then the correlation functions of 
interest can be written in the compact form 

gnnk 2 )  =(1IRk, z)Il) 

gdk, 2 )  = (21W, z)12)(muo)2 

gdk, 2 )  = (4lS(k, z)l4>(m00)~ 

(2.18) 

(51Sk z)l5>(mu0)~. 

The last equality and the additional relationships 

(41S(k, 2)12) (51S(k, 2))2) f (5)S(k,  2)14) = (2)S(k,  2)14) = (21S(k, z)15) 

E (4)S(k, t ) l5)  = 0 (2.19) 

We now turn to the properties of the collision integral 2' as derived by Forster and 
follow from the form of equation (2.15). 

Martin (1970) and Forster (1974). We start by expanding x" in terms of the states X as 

Furthermore, from the conservation of particle number, 

(2.21) 

(2.22) 

(2.23) 
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2.1. Short - time limit 

In Forster’s (1974) notation, as z + a3: 

The matrix elements of X: defined by 

C‘,(k)o= (.lS(k)lP> 

involve the sum rules 

@ E = -  d r g ( r ) V Q ( r ) ,  m 

0: = 3u ik + dr  g (r ) (  1 - cos k . r )(f . V)’@(r) 

and 

(2.25) 

(2.26) 

u: = u t k 2 + L  dr g ( r ) ( l  -cos k . r ) [ ~ ’ -  ( f .  v)~IQ(~).  (2.27) 

Here Q(r)  is the two-body potential and g ( r )  the radial distribution function, both of 
which are spherically symmetric for a liquid. The results are 

2m 

(2.28) 

and all the other matrix elements involving at least one hydrodynamic state, that is Y 
and/or p equal to 2, 3 , 4  and 5, vanish. The remaining elements are given by 

(2.29) 

Forster (1974) also considers the second term Xi in equation (2.24) but this is not 
required for our purposes. 

2.2. Hydrodynamic limit 

In the hydrodynamic limit, z and k + 0, the matrix elements for the hydrodynamic 
states can be expanded to third order in z and k as (Forster and Martin 1970, Mazenko 
1974, Forster 1974): 

(2.30) 
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To this order, the longitudinal and transverse modes are decoupled so that 

z;'$ = I;;5 = C& = c;5 = = 0. (2.31) 

By comparing these expansions with the exact results in the hydrodynamic limit, 
information can be obtained about the equilibrium properties as well as the transport 
coefficients of the liquid. The equilibrium properties of the correlation functions are 
given correctly provided a and d are chosen so that 

and 
mc, = $kB(l +G), 

where kB is Boltzmann's constant. 
The viscosity, thermal conductivity and bulk viscosity are respectively 

2 

2 

q = mnuOyt + q' 
K =nk~UoY33+K' 

and 
t = 3mnu;(3yz2 - 48723 + 2S2y33-44Yt) + 5' 

where 
S = (1 + 3a/4)/( 1 + 5). 

(2.32) 

(2.33) 

(2.34) 

q', K '  and 5' are given as complicated matrix elements involving non-hydrodynamic 
states by Forster (1974) and will not be written out here. 

3. Separation of the collision integral 

For a theory of correlation functions to be correct in both the short-time and 
hydrodynamic limits and to interpolate reasonably between them, it is clear from the 
previous section that the important matrix elements of the collision integral C' are those 
between the hydrodynamic states. In this section we will eliminate these matrix 
elements from the collision integral and kinetic equation and investigate the general 
structure of the correlation functions. 

To illustrate the method, which is a generalization of the work of Lebowitz et a1 
(1969), we first in 9 3.1 eliminate just the static term Zs from the kinetic equation and 
then remove in 9 3.2 and finally all the matrix elements between hydrodynamic 
states in 0 3.3. 

3.1. Static term 

With the explicit form for Cs given in equation (2.10), the kinetic equation for s is 

(2 - vOkx,(zl))s(k, 2; 51952) 

(3.1) 
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Suppose, as with Lebowitz et a1 (1969), Go is the solution of 

(3.3) 

(3.4) 

-- gt(k' 'I - ( m ~ ~ ) ~ ( 4 1 G ~ ( k ,  z))4). 
n (3.8) 
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The result for g,, in equation (3.6) can be used to derive a mean-field theory 
expression for the response function in the form 

(3.11) 

(3.12) 

and the polarization potential 

4 ( k ,  z )  = nc(k). (3.13) 

Nelkin (1969) has shown that several of the older theories (Nelkin and Ranganathan 
1967, Singwi eta1 1970, Kerr 1968) can be cast in this form with particular choices for @ 
and xSc so we will not discuss it further. Finally, we note that the relationship between 
g,, and gl in equation (3.7) following from particle conservation is well known. 

3.2. 2 and 2% 
We now eliminate from the kinetic equation the static and Xz2 terms. As the method is 
the same as in P 3.1, the details will be kept to a minimum. 

Put 

Z c ( k  2 ;  f i ,  5 2 > = % 2 ( k  z)x2(51)~(51)X2(52)+~2(k, 2 ;  Bi, 52) (3.14) 

and suppose that Gz is the solution of the reduced kinetic equation 

(z - uokX2(Sl))G2(k, 2 ; 5 1 , 5 2 1  = -a(& - 5 2 )  + /d83CZ(k, 2; 51,63)G2(k9 2 ; 53 ,52) .  
(3.15) 

As before 

(YJGZ(~,  ~ ) I p ) = ( ~ l G z ( k ,  z)Jv> (3.16) 

and 

z(lIG2(k, z)lP)-~ok(2lG2(k, z)Ip)= -&,I.  

The distribution functions s and G2 are related by 

-% (k, z)x2(63)4 (63) d6&2(64)S(k, 2 ; 549 62)) (3.17) 

and hence the correlation functions can be from which the matrix elements of 
determined. 
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In this case, the mean-field theory of equation (3.11) is maintained but with 

x A ~ ,  2)' vok(lIGz(k, z)I2> (3.18) 

and 

# ( k ,  z )  = nc(k)-+~.~22(k, 2). (3.19) 

The longitudinal correlation gl again satisfies equation (3.7) and the transverse correla- 
tion is now 

(VOk) 

-- gt(k7 ') - ( m 0 ~ ) ~ ( 4 ) G ~ ( k ,  z)(4) 
n 

(3.20) 

with the same assumptions for G2 as equations (3.9) and (3.10) for Go. 

functions. 
We defer until the next section the discussion of these and the following correlation 

3.3. Zs and hydrodynamic matrix elements 

We put 

Z"(k7 2; C C Z : m ( k ,  z )Xn(r l )~ ( r l )Xm(52)+a(k ,  2 ;  e 1 7 5 2 )  (3.21) 

and let G(k, z ;  f l ,  &) be the solution of the kinetic equation with collision integral 
a ( k ,  z ;  &, 12). Then the matrix elements 

5 5  

n=2 m=2 

for the hydrodynamic states are solutions of the equations 
5 

where 

Awl = -nc(k)vOkGp2 

A p m  = C G p n x i m  
5 

n = 2  
for 2 s m s 5 

and 

a,, = n ( 1  +nW)&,AG,,. 
If there is no coupling between the longitudinal (1 ,2 ,3)  and transverse (4,5) states, 
then 

(3.22) 

(3.23) 
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and 4 is given in equation (3.19); the relationship (3.7) is maintained and 

(3.24) 

Obviously this method can be extended and matrix elements for non-hydrodynamic 
states formally eliminated once these states have been specified. 

4. Comparison of theories 

In this section we will compare many of the exisiting theories either by calculating the 
matrix elements of the collision integral when approximate kinetic equations have been 
used or by casting the results into one or other of the general forms of § 3.1,§ 3.2 and 
§ 3.3. The theories will be discussed briefly and in chronological order, the reader being 
referred to the original papers or the review article (Schofield 1975) for further details. 

4.1. Hubbard and Beeby 

Unlike most other theories, Hubbard and Beeby (1969) try to calculate the equilibrium 
properties of the liquid as well as the correlation functions. Their results for ~ ( k ,  z), 
equation (3.11), can be written in the form of 0 3.2 with 

Xsc(k, 2) = ( u o k ) 2 Q ( k  2) (4.1) 

and 

(4.2) 

where XI2 is approximated by 

C;2(k)0 is given in equation (2.28) and Q ( k , z )  is related to the self or incoherent 
correlation function and will not be written out. 

4.2. Chungand Yip 

For the longitudinal correlation function, Chung and Yip (1969) use an approximation 
with two relaxation times; a similar theory with a single relaxation time will be discussed 
below in g4.6. For the transverse correlation function, a single relaxation time 
description is used, the result being equivalent to 0 3.3, equation (3.24), with 

and 

(4.4) 

We will show in the appendix how G44 can be derived from the BGK equation. 



Correlation functions for classical liquids 1781 

4.3. Lebowitz, Percus and Sykes 

The collision integral in the short-time kinetic equation of Lebowitz et a1 (1969) has 
matrix elements 

Zz,,(k, z )  = -i6(-iz)Zzp(k)o (4.5) 
where the function 6 is unspecified apart from satisfying the condition 

6(s)  + l / s  ass+co. 

When the hydrodynamic matrix elements are eliminated, the reduced kinetic equation 
is the Fokker-Planck equation with a modified friction coefficient. 

4.4. Akcasu and Duderstadt 

The approximation developed independently by Akcasu and Duderstadt (1969,1970) 
is the same as P 4.3 but with the explicit choice 

1 
6 ( S )  = - 

s + a ( k ) '  

If we introduce a relaxation time T by putting (Y = 1 / ~ ,  then equation (4.5) becomes 

4.5. Pathak and Singwi 

The screened field theory of Pathak and Singwi (1970) gives a response function 

where XE(k, z) is the response function for a modified ideal gas and involves a mean 
free path T ( k ) .  The comparison of their result with (3.1 1) is not entirely trivial because 
xOc as defined in (3.12) is obtained from a reduced kinetic equation whereas ,yg in (4.7) 
can be regarded as the response function calculated from a non-reduced but approxi- 
mate kinetic equation. To effect the comparison, we put 

x = xsc/( 1 - +XW) 
as before and 

xo = xsc/( 1 - +OX%) 

1 - (+ - +o)xo' 

so that 
x o  X =  

Then, allowing for minor differences in notations, 

(4.8) 
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and 
rl(k z)--cClo(k, 2) = -@nrlps(k). 

1(1 and Jro can now be chosen so that 

with the approximation 

and 

r(k) - ~ ( ~ O J p r ) ~ - 3 ( V o k ) 2 ) .  1 
I)&, 2 )  = -- -- 

2 (v0k)'- (vok) nk 

(4.10) 

(4.11) 

The last expression in the notation of Pathak and Singwi is analogous to (4.10) for their 
modified ideal gas and obviously vanishes when I' is zero. 

4.6. Lovesey 

The theory of Lovesey (1971) for the longitudinal correlation function is similar to that 
of Chung and Yip but involves only a single relaxation time. The result for x is of the 
form of (3.11) with 

and i,b given by (3.19) with 

-ir 
1 -izr Z",(k, 2 )  = - %(k)o. 

(4.12) 

(4.13) 

We will show in the appendix that (4.12) can be deduced from a simplified form of the 
BGK equation. 

4.7. Kugler 

Kugler (1 973) considers 

(4.14) 

and takes x k o  to be the ideal gas response function. As can be seen from P 4.5 when 
r = 0, no additional manipulation is required and (4.14) is equivalent to (3.1 1) with 

1 
(4.15) 

and 
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Kugler examines two choices for +k, the simpler one leading to (3.19) with 

(4.16) 

4.8. Jhon and Forster 

Jhon and Forster (1975) consider the formal expansion of the collision integral in 
momentum space and approximate the first few terms. In our notation, with the 
coordinate axis z chosen to be parallel to k ,  the matrix elements of their collision 
integral are 

(4.18) 

Ai = L o - ( E f n ( k ) ) - l C i ( k ) .  2 n  

and Pi, which is related to the short-time behaviour, will not be written out. In 
particular, 

(4.19) 
and 

(4.20) 

The first term in (4.17) is similar to the theories in § 4.3 and § 4.4 and by choosing 
Hermite polynomials, Jhon and Forster solve the kinetic equation and calculate the 
correlation functions. There remains the choice of the functions o,(k), i e c ( k ) ,  in(k) 
and r ( k )  and these are approximated. 

&(k, Z )  = aZ,',,(k)o + A (e - u ) ( u & ) ~  

%4(k7 2) = U%4(k ) O  

4.9. Summary 

This analysis puts into perspective the various theories so far proposed for the 
correlation functions. For the hydrodynamic matrix elements such as Zz2 the simplest 
choice is the short-time limit 

1 
%z(k, 2) = - S 2 & ) 0 *  

Z 

To include a better description of the z dependence nearly all authors have used a 
relaxation time r with 

(4.21) 
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although the methods suggested for determining T which may be k dependent have 
varied widely. For the reduced correlation functions and xsc much greater imagination 
has been shown and approximations have been developed based on the ideal gas, the 
self function, and the Fokker-Planck and BGK equations. Clearly, the recent theory of 
Jhon and Forster is more ambitious than the others. 

5. Interpolation formulae 

In order to develop interpolation formulae for the correlation functions which are 
correct in both the hydrodynamic and short-time limits, we must consider the matrix 
elements of the collision integral between hydrodynamic states and the reduced 
correlation functions which occur in equations (3.22) and (3.24). Here we will adopt a 
pragmatic point of view and approximate these functions separately. 

The behaviour of the hydrodynamic matrix elements has been discussed in § 2. For 
example, 

with Z;2(k)0 defined in terms of equilibrium functions in equation (2.28) and 

%2(k, 2) + - i~22(uok)~ a sk , z+O (5.2) 

where yZ2 is constant and contributes to the bulk viscosity 
follow most other authors and put 

in equation (2.34). If we 

where T is a k dependent relaxation time, then condition (5.1) is automatically satisfied. 
Since 

with Z o ( k )  remaining finite as k + 0, then condition (5.2) follows from ~ ( k )  + ~ ( 0 )  as 
k + 0 with 

7 2 2  = ZO(O)T(O). (5.4) 
Thus both conditions can easily be satisfied and as the behaviour of 7 for non-zero k is 
arbitrary it can be chosen according to some other criterion such as the ideal gas limit. 
The other hydrodynamic matrix elements can be represented in a similar way. 

The reduced correlation functions GpV are solutions of a kinetic equation with the 
reduced collision integral (T defined in (3.21). If we take (T to be the Fokker-Planck 
operator as in the theories of § 4.3 and 0 4.4, then the matrix elements of (T will be exact 
in the short-time limit, as in equation (2.29). However, the short-time behaviour of 
these matrix elements does not affect the short-time behaviour of the correlation 
functions of interest and so their exact representation is not necessary for our purposes. 
The obvious alternative to the Fokker-Planck equation is the BGK collision integral 
which has matrix elements 

i 
f fpv  = - T4,” (1 - 6.1 - &,2 - &,3 - 8”,4 - 6.5) .  (5 .5 )  
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In general, the relaxation time T may be k dependent and different from T in (5.3). The 
defects of the BGK equation have been known for a long time: for example, the 
equilibrium properties of the correlation functions calculated from the BGK equation 
are the ideal gas results. (This can be seen directly from equations (2.32) and (2.33) by 
noting that a,,(k, z )  and ( ~ ~ ~ ( k ,  z )  are zero by definition and hence (Y and 6 are also zero 
from equation (2.30)). However, because of the elimination of the hydrodynamic 
matrix elements, the properties of the BGK equation are precisely those required here of 
the reduced kinetic equation. 

If we choose simple representations such as (5.3) for the hydrodynamic matrix 
elements and calculate the reduced correlation functions from the BGK equation, the 
results for which are given in the appendix, then the correlation functions are com- 
pletely determined, once the relaxation times are specified, and have the desired 
properties. Without writing out all the analysis, we find from equation (3.22) for the 
density-density correlation function 

2 1 1 
-g f ln (k ,  2) = - S ( k ) - ~ ( u o k ) 2 - ~ ( U O k ) 2 0 : + 0  n z z (5.6) 

as z + 00, which is exact to fifth order. In the hydrodynamic limit, g,,,, has the expected 
form (Kadanoff and Martin 1963) with 

C 2 1 ( 1 + 3 ~ ~ / 4 ) ~  9 = 1 + -  
c, 3 (1-nc(0)) (1+6) 

c 2  = 5(1- nc (0 ) )u;  

K = n k , u ~ ( y 3 , + $ ~ , )  

7 = mnu;(Yt + To) 

5 = 

C” 

- 46743 + 2 ~ ~ ~ 3 3  - 4 yt).  

With the equations (2.32) and (2.33) and the result 

(5.7) 

1 - nc(0) = l/S(O) = l /nkgTKT,  (5 .8)  

where is the isothermal compressibility, it can be seen that the first equation in (5.7) 
is an exact expression for the specific heat ratio cp/cv and the second equation is exact 
for the adiabatic sound velocity c. The transport coefficients are equivalent to (2.34) 
with the contributions q’, K ’  and 5’ of the non-hydrodynamic states given by the 
corresponding BGK results. (The fact that these are not exact is not a serious defect of 
the theory because the experimental values of the transport coefficients cannot be 
separated unambiguously into parts and exact values assigned to q’ etc.) The properties 
of the longitudinal function gl  follow immediately from equation (3.7) and the above 
results. Finally, for the transverse function, from equation (3.24) 

Z P  -gt(k, 2) = nm 2 

as z -* 00. gt  can also be written as 

(5.9) 

nm 1 
P z +ik2q(k, z ) / n m  gt(k,z)= -- (5.10) 
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where q(k, z )  is a generalized viscosity. Then, in the hydrodynamic limit 

d k ,  2) -* m&(yt + 7’0) (5.11) 

which is the same as the result in (5.7). 
The theory outlined above is the simplest way of deriving interpolation formulae 

with the desired properties, although of course it is not unique and in fact the result for 
the transverse correlation function is almost identical to that of Chung and Yip in 0 4.2. 
The main feature of this analysis is that, provided the correct structure is used for the 
correlation functions, the exact results in both the short-time and hydrodynamic limits 
can be obtained with only minimal restrictions on the relaxation times, namely that they 
have the correct values in the limit k + 0. In order to make a sensible comparison with 
experiment, instead of merely curve fitting, it is clear that more information about the 
microscopic nature of the system has to be invoked to determine the k dependence of 
the relaxation times. Finally, the methods developed here are sufficiently flexible that 
they can easily be extended and collision integrals more complicated than the BGK 
equation used, as in the theory of Jhon and Forster. 

Appendix 

The collision integral of Bhatnagar et al (1954) is constructed so that it conserves 
particle number, momentum and kinetic energy. For a distribution function G their 
kinetic equation is 

U,&, z )  = --€s,.”o -6 ,1  -su,2-su,3-sv,4-s”,5) 

E = i/ro. (A.3) 

(A.2) 

and E is related to a relaxation time ro by 

This kinetic equation can easily be solved and the correlation functions evaluated. 
In general 

G , Y = G , Y ( k , 2 ) = ( ~ ( G ( k , ~ ) ( ~ ) = G u ,  04.4) 

-?GIv - ~ o k G 2 ~  = (A.5) 

and 

The correlation functions for the hydrodynamic states are all of the form 

GNU = d,Js 

and can be expressed in terms of a single integral 
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where 

1 Z + E  
p = J 2 -  vok * 
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(A.7) 

The results are 

1 1 E  

Wok 6 Z + E  
d12 = - (1  - J - - - [ J +  4J( 1 - J )  + 2p2(  1 - J)] ) 

1 1  d - -[J+2p2(1-J)] 13-Z Z + €  

The other correlation functions are obtained from these by use of equations (A.4) and 
(A.5). 

In the short-time limit, z -* 00 so that 

p =-( 2 1 +;)+Co. 

vok J2 

Likewise, in the hydrodynamic limit z + 0, k + 0 and 

Now for large p :  

1 3  J = 1 + - + 7 + 0  
2P 4P 

(A.9) 

(A.lO) 

which enables the short-time and hydrodynamic limits of the correlation functions to be 
calculated. In particular, for large p ,  

- - -2 +- ( v o k ) 2 [ 1  + 0(l,p2)]. 1 [Z+E(l--J)] -= - 
G44 J Z + E  

( A . l l )  

This is the approximation of Chung and Yip mentioned in § 4.2. 

which only conserves particle number and momentum in the k direction, then 
Finally, if a simplified form of the BGK equation is used with a collision integral 

w,uu(k 2) = -Esw,u(l- s,1- Su.2 ) .  
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In particular, we now find 

Z€ z J  z 2  22 -- -- 2+1+---  
uokG12 (uok)  Z + E  1-J (uok)  Z + €  

- -- 2 + 1 + -[ 1 + O( l/p2)] 
1 

which is the approximation of Lovesey in 0 4.6. 
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